
SM-AHN Leaflet:

Identifying Systemic Mastocytosis (SM) in Haematological Neoplasms

~20% of SM cases may be initially missed in patients with myeloid neoplasms^{1*}

*Based on 140 patients with Advanced SM from a German reference centre of the ECNM between 2003 and 2018.¹

Diagnosis of systemic mastocytosis (SM) requires 1 major and ≥ 1 minor criterion, or ≥ 3 minor criteria²

WHO DIAGNOSTIC CRITERIA FOR SM²

Major Criterion

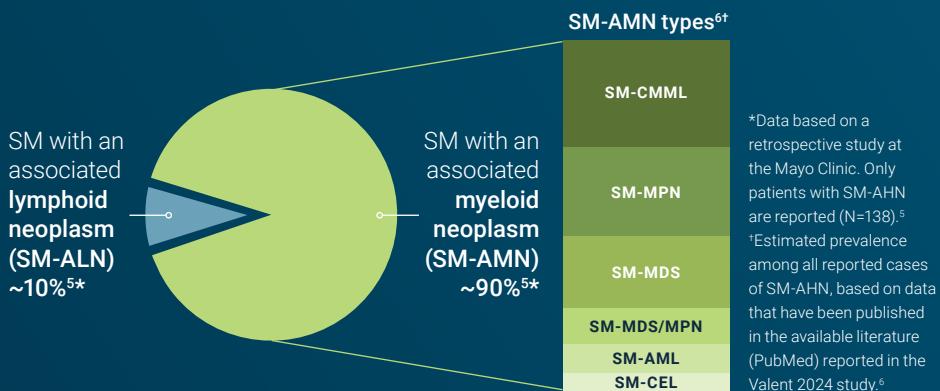
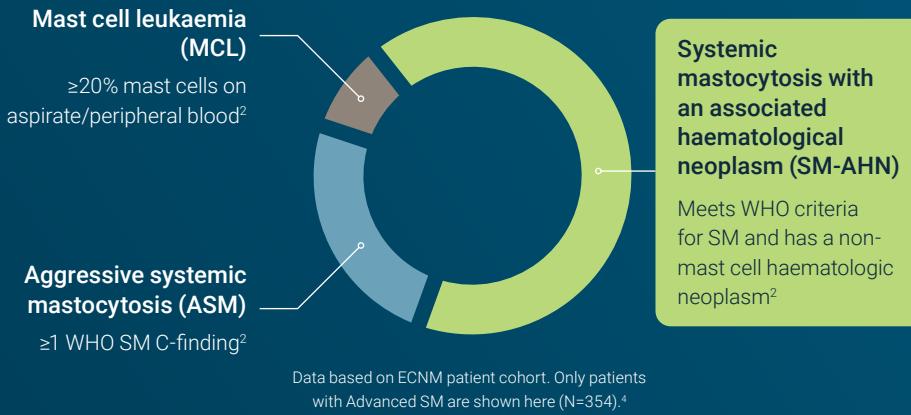
Multifocal dense infiltrates of mast cells (≥ 15 mast cells in aggregates) in bone marrow biopsies and/or in sections of other extracutaneous organ(s)

Minor Criteria

$\geq 25\%$ of all mast cells are atypical cells (type I or type II) on bone marrow smears or are spindle-shaped in mast cell infiltrates in sections of bone marrow or other extracutaneous organs

KIT-activating *KIT* point mutation(s) at codon 816 or in other critical regions of *KIT* in bone marrow or another extracutaneous organ

Mast cells in bone marrow, blood or another extracutaneous organ express one or more of: CD2 and/or CD25 and/or CD30

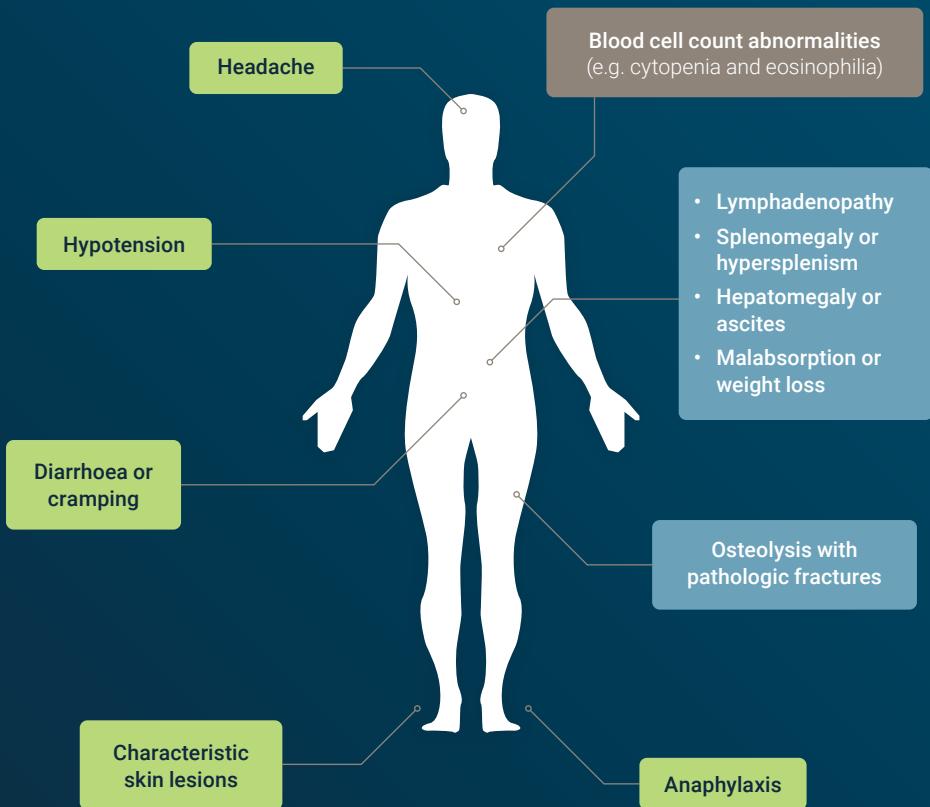



Baseline serum tryptase concentration >20 ng/mL. In the case of a known HaT, the tryptase level should be adjusted

Performing a high-sensitivity *KIT* D816V assay is recommended for patients in whom SM is suspected³

Advanced SM predominantly presents with haematological neoplasms of myeloid origin^{4,5}

CLASSIFICATION OF ADVANCED SM

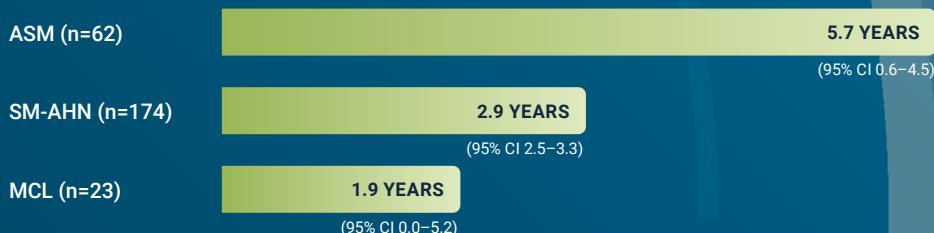

3.4% of CML cases present with concurrent SM;^{7‡}
CML is the most common myeloid neoplasm associated with SM⁶

[‡]Data based on 645 CML patients from the Moffitt Cancer Center CML database.⁷

AML=acute myeloid leukaemia; ASM=aggressive systemic mastocytosis; CEL=chronic eosinophilic leukaemia; CMML=chronic myelomonocytic leukaemia; ECNM=European Competence Network of Mastocytosis; MCL=mast cell leukaemia; MDS=myelodysplastic syndrome; MDS/MPN=myelodysplastic syndrome/myeloproliferative neoplasm; MPN=myeloproliferative neoplasm; SM-AHN=systemic mastocytosis with an associated haematological neoplasm; SM-ALN=SM with an associated lymphoid neoplasm; SM-AMN=SM with an associated myeloid neoplasm; WHO=World Health Organization.

Could your patients with haematological neoplasms be experiencing undiagnosed SM?

The presence of **persistent non-chemotherapy-specific constitutional symptoms** or unexplained organopathy due to mast cell infiltration in AHNs should prompt suspicion and further investigation for SM.^{3,8}



Diagnosis of SM in patients with another haematological neoplasm is defined as SM-AHN, a subtype of Advanced SM.² Advanced SM is a rare clonal mast cell neoplasm and can cause debilitating mast cell symptoms as well as organ damage⁸

SM-AHN=systemic mastocytosis with an associated haematological neoplasm.

Advanced SM is associated with shortened survival compared with non-advanced SM⁹

MEDIAN OVERALL SURVIVAL (OS) FOR ADVANCED SM⁹

Data based on the ECNM registry of patients diagnosed with mastocytosis between 1978 and 2017. Only patients with Advanced SM are shown here (N=259).⁹

UNDERSTANDING THE IMPACT OF SM CO-OCCURRENCE

In a study comparing the clinical outcomes of patients with SM-CMML and CMML alone (N=551):¹⁰

MEDIAN SURVIVAL FOR SM-CMML

18
MONTHS

n=50
Median follow-up of
16 months

MEDIAN SURVIVAL FOR CMML ALONE

24
MONTHS

n=501
Median follow-up of
14 months

SM-CMML has a poorer survival rate than CMML alone¹⁰

Advanced SM may be missed in patients with myeloid neoplasms¹

If you recognise persistent or unexplained haematological findings, consider performing a serum tryptase test and high-sensitivity *KIT* D816V assays to help screen for concurrent SM in myeloid neoplasms^{1,3}

References:

1. Schwaab J, et al. *J Allergy Clin Immunol Pract.* 2020;8(9):3121–3127.e1.
2. Valent P, et al. *Hemasphere.* 2021;5(11):e646.
3. Valent P, et al. *J Allergy Clin Immunol Pract.* 2022;10(8):1999–2012.e6.
4. Valent P, et al. *J Allergy Clin Immunol Pract.* 2019;7(1):81–87.
5. Pardanani A, et al. *Blood.* 2009;114(18):3769–3772.
6. Valent P, et al. *J Allergy Clin Immunol Pract.* 2024;12(12):3250–3260.e5.
7. Kuykendall AT, et al. *Blood.* 2019;134(Supplement_1):2956.
8. Pardanani A. *Am J Hematol.* 2023;98(7):1097–1116.
9. Sperr WR, et al. *Lancet Haematol.* 2019;6(12):e638–e649.
10. Patnaik MM, et al. *Leukemia.* 2018;32(8):1850–1856.